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Abstract. In recent years advances in materials science in the area of molecular beam epitaxy 
have made possible the synthesis of novel materials and novel smctures such as superlattices 
and multilayers. In the face of the expanding experimental interest in superlattices there is a 
need for theoretical work to be done. In addition there has been a lot of attention focused on 
magnetic semiconductors (MS), materials whose magnetic and semiconducting properties interact 
with each other. In this paper a MS superlattice is investigated using a Green function method 
applied to the s-3 interaction model. The specmm of spin-wave excitations is calculated and the 
spectral intensity of certain spin-wave modes is derived from a consideration of the imaginary 
part of the Green function. 

1. Introduction 

There has been much recent experimental interest in the study of magnetic semiconductors 
(MS). Materials which can be classed as ferromagnetic semiconductors include europium 
chalcogenides (such as EuO and EuS) and spinels (such as CdCrzS4 CdCrzSe4 and 
HgCrzSe4). In a MS a clear distinction can be made between the localized and the itinerant 
spins. The localized spins consist off- or d-shell electrons, giving rise to a lattice of spins. 
The itinerant spins, on the other hand, are the conduction electrons from the outermost 
s-shell and they can hop from (atomic) site to site. The interaction of these two types of 
spin gives rise to the interesting properties of MSS. 

Anderson [I] showed that the d electrons in magnetic insulator compounds are localized. 
The spin-wave theory of ferromagnetic metals was developed by Herring and Kittel [2] and 
this is the basis for the itinerant part of the present theory. For a discussion of the background 
to this topic, see for example [3]. 

Additionally, the development of molecular beam epitaxy, by which crystals can be 
grown one layer at a time, has paved the wzy for the investigation of artificially layered 
materials such as superlattices. A superlattice is a regularly repeating structure made up of 
set number of molecular layers of each of its components. In this paper a binary superlattice 
is considered, i.e. two materials A and B which alternate in an infinite laminate. The 'unit 
cell' has (nA - 1) layers of material A and (ne - 1) layers of material B. The material is 
assumed to be effectively infinite in the plane of these layers. 

The theory of excitations in ferro- and antiferromagnetic superlattices has been 
developed [4]; in this case the superlattice consisted of alternate. slabs of magnetic and 
non-magnetic material. Also, a calculation for a ferromagnetic multilayer in the dipolar- 
magnetostatic limit [SI has been done. Light-scattering theory for a stack of ferromagnetic 
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slabs (a magnetichon-magnetic superlattice) has also been developed [9]. There is much 
experimental interest in magnetic superlattices (e.g. 110, 111). 

In this paper a microscopic approach [14] to the study of excitations in a magnetic 
semiconductor superlattice is used in which a Heisenberg ferromagnet interacts with the 
itinerant spins of conduction electrons via a contact-type interaction. A calculation 1121 
based on the same microscopic approach has been performed for an infinitely extended bulk 
magnetic semiconductor and it shows that there are two spin-wave branches (‘acoustic’ and 
‘optical’) and a continuum of Stoner-like magnetic excitations. 

The same model has been examined in some recent papers [17, 181 for the cases of 
a semi-infinite material, a finite slab and an interface between two dissimilar semi-infinite 
media. Building on those works, this paper considers the case of an infinite-bulk binary 
superlattice with a simple cubic unit cell. 

In a superlattice the excitations can be divided into three types [13]: ‘pure bulk‘ (which 
propagate throughout the whole material and have bulk-lie character in both component 
materials), ‘pure interface’ (which are exponentially decaying in both materials and therefore 
confined to the interfaces) and ‘bulk-interface’ (which have bulk character in one material 
and decay exponentially in the other). This classification is discussed further in section 3. 

The parameters used in this paper for material A correspond to the c a e  of CdCrzSe, 
[5 ] ,  which is usually considered to be a narrow-band magnetic semiconductor. Then the 
parameters for material B are varied in turn to give the figures presented here. 

Experimental observation of spectra in these materials has been achieved via light 
scattering 161. The acoustic branch modes shown in this paper are very accessible to 
Brillouin scattering techniques. 

The purpose of this paper is to investigate the excitation spectra for a MS superlattice, 
using a Green function approach 

2. The Green function theory 

Beginning with the Hamiltonian 

the narrow-band limit is considered, that is where the conduction bandwidth (which is equal 
to 12t for a simple cubic lattice) is small compared to IS. Consequently, the ‘hopping’ 
interaction strength t is set to zero in the remainder of this paper. 

In the above equation the operators a i  and ai, are creation and annihilation operators 
respectively for a conduction electron at site i and having spin c = &l. The spin operators 
for conduction electrons are defined in terms of the a and at;  s+ = a/+ai-. s- = .!-ai+, 
s - - i(at 2 I +  a .  I +  - at I -  ai-). The vector operators Si are spin operators for the localized 
d- or f-shell electrons. Thus the term in Jjj is a Heisenberg-like interaction between 
nearest-neighbour sites on the lattice. Ho is the external magnetic field, g and g, are 
the Land6 factors for localized and conduction electrons respectively and PB is the usual 
Bohr magneton. 

The superlattice structure consists of ( n A  - 1) layers of material A and ( n g  - 1) layers 
of material B infinitely repeated in the zdirection and the material is assumed to be infinite 
in the (x.  y)-plane. The interaction Jjj is assumed to take a value J A  in the bulk of material 
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A and J g  in the bulk of material B. For nearest neighbours in the the layer in material A 
adjoining the interface the value is taken as JAS and similarly in material B the value is 
J B S .  When one site is in material A and one in B (i.e. across the interface) the value taken 
is Jr. For Ii the situation is similar except for the fact that it is a single-site interaction, so 
there is no ZI, but all the other modifications apply. 

The Green function can be derived via an equation of motion: 

The Green functions appearing in this equation have been Fourier transformed in time and 
are the frequency- (U-) dependent versions; the subscript to indicate this explicitly has been 
dropped. 

After calculating the commutators in (2) I arrive at an equation involving terms like 
((S$$: S;)). In principle one could derive a further equation for these Green functions, 
which would then involve terms in yet more complicated Green functions. However, in order 
to perform some calculations it is necessary to truncate this hierarchy of Green functions 
and the approximation chosen to do this is the RPA or random-phase approximation: this 
replaces the operator SL by its average value (S') N S and is valid in a low-temperature 
regime, where the spins do not vary much from the fully aligned state. 

Having done this it is possible to proceed towards a solution of the equations. Taking a 
Fourier transform in the ( x ,  y)-plane using the lattice periodicity (lattice spacing = a)  and 
in the z-direction using the superlattice periodicity (@A - l)a+ (ng  - I)a = ( N  -2)a = L), 
the following expression is obtained: 

Sm 
- -Sm,n= ( O - O O + I ~ ( ~ ~ ) + ~ J ~ S ~ ( ~ - Y ( ~ ~ I I ) ) +  Jm.m- Ism- I+  Jm.m+lsm+l)Gm,n n 

-Jnc,m+lSmGm+I,n - 3m.m-rSmGm-1.n  - 1mSmgm.n (3 ) 
where WO = gp,BHo, G,,,(k#, w )  is the Fourier transform of the Green function ((S,': S;)) 
and similarly gm.n(kll, w )  is the Fourier transform of ( (sz ;  SJ). The function y(k11) = 
$(cos(k,a) + cos(k,n)) arises from the ZD Fourier @amform and the a in the argument of 
the cosine functions is the simple cubic lattice spacing. 

A similar equation to (3) holds for the gm," but in this case, since I am assuming ti. j = 0, 
the corresponding equation is much simpler. It reduces to 

where we = gep,gHo. By combining (3) and (4) an equation for em," can be derived and it 
is found [16] that a convenient representation is in terms of tridiagonal mahices, whereby 
this equation can be solved. The resulting equation is: 

where MO is the pure tridiagonal matrix and Am) includes the effect of the interfaces: 

where aA,  UB and Aim are given by 
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with a similar expression for UB but with the As being replaced by Bs. The interface 
perturbation Alm is given by the following equation: 

h1.1 = & A - I , ~ - I  = J A ~ A A A  An,.n, AN-Z. N-2 = JBSBAB 

(8) 
&.,-i.nA = -JISA 
AN-& I = -J~S~exp{ik,L) 
&,m = O  otherwise. 

AnA.ttA-i = - J I ~ B  

A I . N - ~  = -J~S~exp(-ik,L) 

The quantity AA (and in a similar manner, AB, but with B replacing A and vice versa) is 
defined as 

(9) 

where JAS represents the modified interaction in the set of layers on one side of the interfaces. 
Similarly, ZM and ( s i s )  are the modified values of ZA and ( s i )  in that same set of layers. 
The solution for the Green function is derived by inverting the hidiagonal matrix of elements 
Mk. The m a ~ x  splits into two blocks each of which can be inverted by a standard well- 
known formula [I91 by defining x + x - I  = aA and y + y-' = aB. Then the inverse 
is 

- z:ca, + 1:s (SXS) 

JA(W - W, - IASA) JA(W - W, - Z ~ S A )  

Xl+m - XIf-ml + X2n*-f-m - x2n*-11-ml 

JASA(X - X - ' ) ( I  - XhA)  
1 d 1 . m  $ n A -  1 

(10) ( ~ 0 1 ~ 1  = ,,Z+I+m-2n~ - If-ml + N-2-f-m -y2n~-l l-ml 

n A < L I , m < N - 2  Y Y 
JBSB(Y - Y-')U - Y".) 

," io otherwise. 

The formal solution for the Green function is therefore 

(11) 
S ~ , , . ( k ~ ~ ,  W )  = [I + (M~)-'A]-' (M 0 - 1  ;. n 

3. The excitation spectrum 

The poles of the Green function give the energy excitation spectra of the material. To 
calculate the poles it is sufficient to examine the determinant of the quantity in square 
brackets in (11). Call this determinant DO. Then look for solutions of DO = 0. Calculating 
thedeterminant and writing XI = ( x - x ( ~ ~ - I ) ) / ( l - x ~ ~ ) ) ,  Xz = ( x ~ - x ( ~ * - ~ ) ) / ( ~ - x ( ~ ~ * ) )  
and X3 = (.dn*-I) - x("A+'))/(l - and with similar expressions for Yl, YZ and Y3 
(involving y and ng) the following equation is derived 

Do = (1 + X A X I  + AA'XZ)(~ + ~ A B Y I  + AB~Yz) 
+2q [(Xi + AAXZ)(YI + ABYz) + COS (kzL)X3Y31 + rfX2Yz (12) 

where r~ = J?/(JAJB). Note that when the interaction strength across the interface vanishes, 
so that rr = 0 then the above equation simplifies to 

(13) 
which is simply the product of the two separate equations for a finite slab of material A 
and one of material B. This is what would be expected after all, since when rc = 0 there is 

0 = (1 + ~ A A X I  + A~'x,)( l  + ZABYI + AB'Yz) 
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no connection across the interfaces and the problem reduces to two infinite sets of identical 
slabs. 

As with other cases of simpler geometry the nature of the modes depends on the variables 
x and y .  In general a mode will be localized in material A if [ x I 4 1 and a mode will be 
‘bulk-like’ in material A if I x , [  = 1. Similar conditions on y apply for material B. Taken 
together these conditions on x and y imply the classification [13]. However, the modes 
observed in the figures in this paper connect smoothly across the bulk-band boundaries and 
so one branch may have differing properties along its length in kll space. 

The excitation spectrum for infinitely extended bulk material A (and with a similar 
formula for material B) is given by the following equation: 

In figures 1-5, which show the excitation spectra, the limits of the bulk bands are shown 
by heavier lines. These lines correspond to taking cos(q,a) = f l  in (14). There are two 
regions of energy, the ‘acoustic’ w << I I J  and the ‘optic’ 61 - I I J ;  in this paper only 
the ‘acoustic’ region is considered for simplicity and also because the acoustic region is 
easier to observe experimentally than the optic modes. Mauger and Mills [7] found that 
within RPA the acoustic mode is not damped and their treatment beyond the RPA finds that 
the dmping of the acoustic modes only becomes large as T + Tc. Therefore, the acoustic 
mode results displayed here should be observable, at least for temperatures low compared 
with the Curie temperature. 

(si), 
(si,) = (si). The figures are all plotted with ‘in-plane wavevector’ as their x-axis; in fact, 
it is k, which is used as the independent variable with k, set to zero. 

To simplify matters further I shall assume that IAS = IA,  IBS  = I B ,  (sis! 

I I I I 

Figure 1. The excitation specl” in the acoustic 
repion: heavy lines show the limits of the bulk bands, 
parameter values are JA = 1.0, JB = 1.2, J+s = 0.5, 

Figure 2. The excitation spectrum in the acoustic 
region with SA = 1 and SB = 5 and other parameters 
as for figure 1. 

JBS = 0.8. J, = 2.0, iA = ins = 200, iB = css = 240. 
I I ( S i )  = ( S L )  = 5, (Sg) = (Sk) = 5.  SA = SB = 1. 

og = 0. = 0.3. k,L = 0, n* = 3, n~ = 7. 
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Figure 1 shows a general case of discrete bulk-like modes and two interface modes 
labelled. Figure 2 shows the mode mixing which can occur when the parameters of the two 
materials are sufficiently different: here the magnitudes of the localized spins are SA = and 
SB = 1. Figure 3 shows the effect of having a small value of 4; note how the modes follow 
one or other of the bulk-band limits; in this case it is very much like having two separate 
materials. Figure 4 shows the result of altering cos(k,L) from the parameters of figure 1; 
note the difference in the uppermost bulk mode in this figure. Figure 5 shows the effect 
of altering the thickness of one of the components of the superlattice (here nA = 5). The 
two interface modes in this figure have been labelled p and q for comparison with figure 6, 
which is discussed in section 4. Note how the lower interface mode (labelled q) is lowered 
from the case of figure 1. This lowering reaches a minimum when the two components have 
equal thickness as would be expected intuitively. The dependence on relative thickness of 
the component layers has  not been investigated fully and is a possibility for further work; 
for example, does the ratio JASA/ JBSB affect this effect in any way? 

in-plane wavevector 
Figure 3. The excitation spectrum in the acoustic Figure 4. The excitation s p c t ”  in the acoustic 
region with 31 = 0.1 and other parametea as for region with L+L = n and other parameten as for 
figure 1. figure 1. 

4. Spectral intensity 

As an example of the application of the Green function method, the explicit Green function 
is caculated for a particular case and from that result the spectral intensity, which is related 
to the imaginary part of the Green function, is calculated. Thus the explicit form of the 
Green function in the topmost layer of material ‘A’ is given by the following: 

GI,  I ( ~ I I . @ )  = 

The imaginary part of the Green function is related to the spectral intensity; there is also 
a thermal factor, but if low temperature is assumed this can be effectively set to unity. 
The imaginary part of the above expression will have delta-function contributions at the 

(15) 
(xi 4- AAXZ)(I f ~ A B Y I  f AgYz) - rlXz(y1 + ABYz) 

JAXDO 
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I 
0 1 2 3 

in-plane wavevector 
Figure 5. The excitation spectrum in the acoustic region with n~ = 5 and other parameters as 
for figure 1. Two inkerface modes are marked p and q for mmparison with figure 6. 

0 1 2 
in-plane wavevec 

Figure 6. The spectral intensity in layer 1 (top layer of material A slab) for the interface modes 
in figure 5, correspondingly labelled p and q. 

energies corresponding to the interface modes (x and y are both real). To calculate the 
contributions to the spectral intensity from the two interface modes labelled p and q in 
figure S the following fokula  is employed 

where x, is a root of g(x)  = 0. 
Thus, the derivative d&/dw is calculated and used to compute the imaginary part of 

the Green function. The results are shown in figure 6 where the labels p and q correspond 
to the two interface modes of figure S. 
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5. Conclusion 

The Green function for a magnetic semiconductor binary superlattice having simple cubic 
crystal structure has been calculated and the result has been used to determine excitation 
spectra The effects of varying the parameters of the model, such as the interaction strength 
across the interfaces and the magnitude of the localized spins, has been investigated and 
the resulting graphs have been presented. Also the spectral intensity of the interface modes 
in the top layer of material A has been calculated. 

0 or by not 
considering IAs # I* for instance, and it would be interesting to investigate some extensions 
of the theory presented here in future. Also, in order to facilitate the application of this 
work to experimental investigations a calculation of, for example, the spin-wave stiffness 
parameter could be performed. There has not been time to include such a calculation here, 
but I hope to consider this in future work. 

The model considered here has been limited in many ways, by assuming t 
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